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Abstract – Inversion techniques to determine the 
complex material constants from the impedance data of a 
zero bond-length stack resonator are studied.   The impedance 
equation examined in this paper is based on the derivation by 
Martin [G.E. Martin, JASA, 36, pp. 1496-1506, 1964].  The 
asymptotic solutions for the case where the number of layers 
n is large (n>8) and n small (n≤≤≤≤2) are presented in terms of 
the complex material constants of the piezoelectric.   When n 
= 1 or 2, it is shown that the wave speed in the stack is 
determined by the open circuit elastic constant sD

33.   In the 
limit of large n, the wave speed is determined by the short 
circuit elastic constant sE

33.   Techniques to invert the 
impedance data to determine complex material constants are 
presented for all values of n.  The error associated with using 
the impedance equations derived from fully short and fully 
open electrical boundary conditions is investigated.   Since the 
model is based on material properties rather than circuit 
constants, it allows for the direct evaluation of specific aging 
or degradation mechanisms. 
 

I. INTRODUCTION 
 

 Piezoelectric stacks are used in a variety of 
applications that require relatively high force and larger 
displacement than single element piezoelectric transducers 
can produce.  These include micro-positioning systems, 
solid-state pumps/switches, noise isolation mounts, 
ultrasonic drills and stacked ultrasonic transducers.  The 
solution for the zero bond length stack was derived by 
Martin [1], [2].  His model was derived from Mason’s 
equivalent circuit of n layers connected mechanically in 
series and electrically in parallel as shown in Figure 1.   

 
Figure 1.  Equivalent circuit representation of a stack with the 
mechanical ports of each equivalent circuit representing a layer 
connected in series and n electrical ports in parallel. For Stacks 
with aspect ratios Length/width < 5 elastic constants are 
effective. 

II. THEORY 
Martin’s general solution for the admittance of a 

piezoelectric stack of area A, n layers and total length nL is 
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and DD sv 33/1 ρ=  is the acoustic velocity at constant 

electric displacement.  The constants 33
D
3333  ,s  , dTε  are the 

free permittivity, the elastic compliance at constant electric 
displacement and the piezoelectric charge coefficient, 
respectively.   Using equations 1 to 7, Martin demonstrated 
that in the limit of large n (n>8), the acoustic wave speed in 
the material was determined by the constant field elastic 
constant Es33  ( EE sv 33/1 ρ= ).  In the limit of n > 8 an 
analytical equation for the admittance was presented which 
allowed for direct determination of material constants from 
the admittance data [3].   In this limit the admittance was 
shown to be: 
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where the series resonance frequency is 
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In addition to the many layer approximation discussed by 
Martin, equations 1 to 7 can be shown to reduce to another 
exact analytical solution in the limit of n = 1 or 2: 
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The wave propagates at a speed DD sv 33/1 ρ=  that is a 
function of the elastic compliance at constant electric 
displacement.  The parallel frequency constant is: 
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Equations 8 and 10 can be used to analyze data for stacks 
with many layers (n>8) and stacks with n = 1 or 2 using 
Smits’ method [4] to determine the effective complex 
material properties of the piezoelectric material.  

An alternative approach (which is valid for all 
values of n) is to directly fit equation 1 to the data using non-
linear regression techniques for complex parameters as has 
been done for bulk [5] and thin film [6] resonators.  A 
modified Levenberg-Marquardt (LM) regression routine for 
Martin’s stack solution was developed.  The LM routine 
used a hybrid algorithm of steepest descent and inverse 
Hessian matrix methods to minimize χ2 during each iteration 
of the algorithm.  We defined the χ2 for this system as 

∑ 




 ∆+∆+∆+∆=
n

i Xi

i

Ri

i

Bi

i

Gi

i XRBG
2

2

2

2

2

2

2

2
2

σσσσ
χ         (12) 

where the ∆’s are the difference terms between the 
conductance G, susceptance B, Resistance R and Reactance 
X data and the model at each point i.  The χ2 shown above 
uses both admittance and impedance data to determine the 
best fit.  The sigma values are weighting terms for each point 
in the spectra. 

III. RESULTS 
 

In order to look at the transition between constant D 
and constant E acoustic wave speeds, the 
impedance/admittance was calculated as a function of 
frequency for n = 1 to 10 using equations 1 to 7 and the 
material properties shown in Table 1.  The conductance 
determined from this calculation is shown in Figure 2.  The 
total stack length was kept fixed.  In the case n = 1, 2, the 
first and second series resonance frequencies are 
independent of n.  For n>3, a shift in the second series 
resonance frequency is seen, caused by transition from 
constant D to constant E elastic boundary conditions.   

To determine the magnitude of error in material 
constants determined from limiting equations 8 and 10, 
impedance data was analyzed using Smits method as a 

function of the number of layers.  The coupling and elastic 
stiffness at constant electric displacement are shown in 
Figures 3 and 4.  In the limit of large n, the real and 
imaginary part of the coupling coefficient determined using 
equation 8 approaches the input value.  For n = 1, 2, the 
results determined using equation 10 are exact and error 
increases asymptotically to differences of 2.7% in the real 
and 6.7% in the imaginary part of the coupling coefficient.  
Similar deviations from the input values are seen for the 
analysis using equation 8 when n = 1, 2. 
 
Table 1: The effective material properties for the data of the stack 
resonator shown in Figure 2.  The stack length nL = 0.02m, Area A 
= (0.01)2

 m2 and density ρ = 7800 kg/m3.   
 Property Real Imaginary 

Es33  (m2/N) 2.00x10-11 -3.00x10-13 

T
33ε  (F/m) 3.085x10-8 -6.17x10-10 

33d   (C/N) 3.925x10-10 -7.66x10-12 

33k    0.50 -0.001 

 
Figure 2. The conductance as a function of frequency for n=1 to 10 

layers. 
 

Figure 4 shows similar behavior for the elastic 
compliance determine by Smits’ method using the two 
limiting equations.  At n=1, 2, the analyzed results are equal 
to the input value for the impedance equation determined 
from the assumption of constant D boundary conditions (eqn. 
10).  As n increases the elastic stiffness determined from the 
fit to the constant E equation (eqn. 8) approaches the input 
value.  Comparable behavior is seen in the imaginary 
component (loss Q=Re(sE)/Im(sE)).   

It is apparent from the previous discussion that in 
the limit of n=1,2 or n>8 that the equations 8 and 10 can be 
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used to determine material properties to sufficient accuracy. 
For n = 3 to n = 8, errors on the order of 3% for  

 
Figure 3.  The electromechanical coupling constant k33 determined 
using Smits’ method with the impedance equations determined 
from constant D and constant E elastic boundary conditions. Doted 
lines are the real (bottom) and imaginary (top) parts of the input 
k33. 

 
Figure 4.  The elastic compliance Es33 determined using Smits’ 
method with the impedance equations determined from constant D 
and constant E elastic boundary conditions. Doted lines are the real 
(bottom) and imaginary (top) parts of the input Es33 . 

 
the coupling constant and 6% for the elastic constant are 
found.  These errors were found to increase to 6% and 20% 
for a coupling of k33 = 0.75. 

To evaluate the LM non-linear regression routine, 
impedance data generated from equation 1 and Table 1 were 
used along with starting values determined using Smits’ 
method with equations 8 and 10.  In all cases, the results of 
non-linear regression were found to converge to the input 
data within numerical limits and exact fits to generated 

spectra were found.  In order to simulate real data, random 
noise was added to the n = 3 spectrum by multiplying R and 
X by (1+ xr) where x was a fractional percent and r was a 
random number between 1 and -1. The n = 3 spectrum 
resulted in the largest error in parameters from either of the 
asymptotic solutions.  The spectrum and its fit are shown in 
Figure 5 for x = 0.1 (10% error).  The fit was found to 
overlap the data.  The results of the analysis for this 
spectrum are shown in Table 2. 

 
Figure 5.  The impedance spectra (n=3) with random error (10%) 
added and the fit to the spectra using the modified Levenberg 
Marquardt non-linear regression routine.  The data and the fit are 
seen to overlap.  A similar fit is found in the phase versus 
frequency plot. 
 
Table 2: The effective material properties for the data for the stack 
resonator shown in Figure 5.  The stack length nL = 0.02m, Area A 
= (0.01) 2

 m2 and density ρ = 7800 kg/m3.   
 Property Real Imaginary 

Es33  (m2/N) 2.00x10-11 -2.98x10-13 

T
33ε  (F/m) 3.071x10-8 -5.55x10-10 

33d   (C/N) 3.915x10-10 -7.16x10-12 

33k    0.499 -0.00089 
 

The error in the real part of the material coefficients 
is less than 1 % while the error in the loss components with 
the exception of the elastic constant is of the order of 10%.   

The impedance spectra for well-aged Morgan 
Matroc stacks (PZT 4S) were measured using a Solartron 
1260 impedance analyzer.  Impedance spectra of the stack 
leads were taken to determine the short circuit corrections 
for the holder.  The overall dimensions of the stack were 
measured using a micrometer.  The number of layers was 
determined with an optical microscope.  The effective 
density was determined by removing the leads of one of the 
stacks, and measuring the mass of the stack, and dividing by 
the stack volume.   The stack impedance resonance spectrum 
is shown in Figure 6 for one of the Morgan Matroc stacks.  
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The first major resonance is the length extensional resonance 
of the stack.  The smaller resonances above fP are due to 
resonance in the lateral direction.  The spectra were fit using 
the non-linear regression analysis and the results are shown 
in Figure 6.  The fit to both the impedance and phase is 
shown.   It should be noted that these stack samples differ 
from an ideal stack in that they have a small aspect ratio 
(1:1), contain end-caps (0.6mm PZT), and the internal 
electrodes are discontinuous and do not cover the full cross 
sectional area of the stack.  

 
Figure 6.  The impedance spectra of a Morgan Matroc stack and the 
fit (lines) to the spectra (symbols) using the modified Levenberg 
Marquardt non-linear regression routine.  
 
Table 3: The material properties for the Morgan Matroc stack 
resonator shown in Figure 6.  The stack length nL = 0.00501m, 
effective area A = 1.9x10-5

 m2 density ρ = 7794 kg/m3, and n = 28.  
The data was found to agree with the manufacturers specifications.  
 Property Real Imaginary 

Es33  (m2/N) 1.80x10-11 -8.8x10-14 

T
33ε  (F/m) 1.27x10-8 -4.0x10-11 

33d   (C/N) 2.80x10-10 -1.8x10-12 

33k    0.587 -0.0014 

 
It should be noted that impedance measurements are 

usually a small signal excitation. In the majority of 
applications where a stack is used, the sample is driven at 
high fields and low frequencies.  The degree to which the 
small signal measurement agrees with data from quasi-static 
high field measurements depends primarily on whether the 
material is hard (high coercive field) or soft (low coercive 
field).  For a material that is soft, the dielectric and 
piezoelectric constant are found to depend linearly on the 
size of the drive field up to the coercive field where domains 
begin to switch [7].  For example, in the Motorola 3203HD 
material both the piezoelectric and dielectric constants were 
found to double their small signal values at fields 

approaching the coercive field of the material.  For harder 
materials the field dependence is less pronounced.   

Another possible limitation of small signal 
measurements is the frequency of measurement.  For quasi-
static devices that operate at low frequency, the permittivity 
and piezoelectric constant are slightly higher due to an 
intrinsic dispersion in material properties.  It is apparent that 
small signal resonance measurements are in effect a baseline 
measurement, which allows for the investigation of stack 
material parameters in the linear reversible regime under 
isothermal conditions. 

IV. CONCLUSIONS 
A model for the impedance resonance of a stack resonator 
was studied which allowed for non-destructive evaluation of 
the material properties of the stack.  A set of multi-layer 
stack resonators were tested and the impedance spectra fit 
using various models.  The constants determined from fitting 
the data were found to be in good agreement with 
manufacturers specifications.  
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